1/cosx + 1/(cosx.cos2x) + 1/(cos2x.cos3x) = 1/sinx
Em hãy giải như sau
[laTEX]dk: cosx, cos2x,cos3x,sinx \not = 0 \\ \\ \frac{1}{cosx}+\frac{1}{cos2x}(\frac{1}{cos3x} + \frac{1}{cosx}) = \frac{1}{sin x} \\ \\ \\ \frac{1}{cosx}+\frac{1}{cos2x}(\frac{2cos2x.cosx}{cos3x.cosx}) = \frac{1}{sin x} \\ \\ \\ \frac{1}{cosx}+\frac{2}{cos3x}= \frac{1}{sin x} \\ \\ sinx.cos3x-cosx.cos3x + 2sinx.cosx = 0 \\ \\ sinx.(4cos^3x-3cosx)-cosx.cos3x + 2sinx.cosx = 0 \\ \\ cosx = 0 (L) \\ \\ sinx(4cos^2x-3) - (4cos^3x-3cosx) + 2sinx =0 \\ \\ 4tan x -tanx(1+tan^2x) - 4 + 3(1+tan^2x) = 0 \\ \\ (1+tanx)(tan^2x-4tanx+1) = 0 [/laTEX]