Ta có: m=x2+x+23x2+4x+8x2−x+1+x2+x+1
Ta thấy: x2−x+1+x2+x+1=(21−x)2+43+(x+21)2+43≥(21−x+x+21)2+(23+23)2=2 x2+x+23x2+4x+8=4−x2+x+2x2≤2⇒m≥22=1
Vậy Min m = 1.
Ta có: m=x2+x+23x2+4x+8x2−x+1+x2+x+1
Ta thấy: x2−x+1+x2+x+1=(21−x)2+43+(x+21)2+43≥(21−x+x+21)2+(23+23)2=2 x2+x+23x2+4x+8=4−x2+x+2x2≤2⇒m≥22=1
Vậy Min m = 1.
Ta có: m=x2+x+23x2+4x+8x2−x+1+x2+x+1
Ta thấy: x2−x+1+x2+x+1=(21−x)2+43+(x+21)2+43≥(21−x+x+21)2+(23+23)2=2 x2+x+23x2+4x+8=4−x2+x+2x2≤2⇒m≥22=1
Vậy Min m = 1.