Phương trình

B

braga

$\fbox{1}.$

$$\begin{array}
p pt\iff 2x-4\sqrt{x^2+3}+2\sqrt{8+2x-x^2}=0 \\
\iff \left(2-\sqrt{x^2+3}\right)^2+\left(-3+\sqrt{8+2x-x^2}\right)^2+8\left(-3+\sqrt{8+2x-x^2}\right)=0 \\
\iff \left(2-\sqrt{x^2+3}\right)^2+\left(\sqrt{8+2x-x^2}-3\right)^2+\dfrac{8(x-1)^2}{\sqrt{8+2x-x^2}+3}=0 \\ \iff x=1
\end{array}.$$
 
B

braga

$\fbox{2}.\ \text{HD:}$
Theo $Cauchy-schwartz$ ta có:
$$\left(x\sqrt{x+1}+\sqrt{3-x}\right)^2\le \left(x^2+1\right)(x+1+3-x)=4\left(x^2+1\right) \\ \implies VT=x\sqrt{x+1}+\sqrt{3-x}\le 2 \sqrt{x^2+1}=VP$$
Dấu $"="\iff \dfrac{\sqrt{x-1}}{x}=\sqrt{3-x} \iff (x-1)(x^2-2x-1)=0$
 
Top Bottom