giải phương trình
a.[tex]8x^{2}-1=2x\sqrt{2x+3}[/tex]
b.[tex]4\sqrt{x+5}-\sqrt{x+1}=x+9[/tex]
b) ĐKXĐ: [tex]x\geq -1[/tex]
[tex]4\sqrt{x+5}-\sqrt{x+1}=x+9\\\Leftrightarrow (4\sqrt{x+5}-8)-\sqrt{x+1}=x+1\\\Leftrightarrow \frac{16(x+1)}{4\sqrt{x+5}+8}-\sqrt{x+1}=x+1\\\Leftrightarrow \sqrt{x+1}\left ( \frac{16\sqrt{x+1}}{4\sqrt{x+5}+8}-1-\sqrt{x+1} \right )=0[/tex]
Th1: [tex]\sqrt{x+1}=0\Leftrightarrow x=-1(t/m)[/tex]
Th2: [tex]\frac{16\sqrt{x+1}}{4\sqrt{x+5}+8}-1-\sqrt{x+1} =0\\\Leftrightarrow \sqrt{x+1}\left ( \frac{16}{4\sqrt{x+5}+8}-1 \right )=1(DK:x>-1)\\\Leftrightarrow \frac{16}{4\sqrt{x+5}+8}=1+\frac{1}{\sqrt{x+1}}(*)[/tex]
Vì [tex]x>-1\Rightarrow \frac{16}{4\sqrt{x+5}+8}< 1;1+\frac{1}{\sqrt{x+1}}>1[/tex] và [TEX]1+\frac{1}{\sqrt{x+1}}>1[/TEX]
Suy ra (*) vô nghiệm
Kết luận...