Toán Phương trình vô tỉ

N Lan

Học sinh
Thành viên
21 Tháng chín 2017
14
3
21
22
Hà Nam
[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Giải phương trình:
1.8+x3+5x3=5\sqrt{8+\sqrt{x-3}} +\sqrt{5-\sqrt{x-3}}=5
2.x+x2+xx2=x+1\sqrt{x+x^2} +\sqrt{x-x^2}=x+1
3.2x21+x23x2=2x2+2x+3+x2x+2\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x+2}
 

thangnguyenst95

Cựu Phụ trách môn Toán
Thành viên
9 Tháng tư 2013
163
214
36
Hà Nội
1. Đặt x3+132=t\sqrt {x - 3} + \frac{{13}}{2} = t nhé.
2. Phương trình tương đương với :
$\begin{array}{l}
2\sqrt {x + {x^2}} + 2\sqrt {x - {x^2}} = 2{\rm{x}} + 2\\
\Leftrightarrow x + {x^2} - 2\sqrt {x + {x^2}} + 1 + x - {x^2} - 2\sqrt {x - {x^2}} + 1 = 0\\
\Leftrightarrow {\left( {\sqrt {x + {x^2}} - 1} \right)^2} + {\left( {\sqrt {x - {x^2}} - 1} \right)^2} = 0
\end{array}$
3. phương trình tương đương với:
$\begin{array}{l}
\left( {\sqrt {2{{\rm{x}}^2} + 2{\rm{x}} + 3} - \sqrt {2{{\rm{x}}^2} - 1} } \right) + \left( {\sqrt {{x^2} - x + 2} - \sqrt {{x^2} - 3{\rm{x}} - 2} } \right) = 0\\
\Leftrightarrow \frac{{2{\rm{x}} + 4}}{{\sqrt {2{{\rm{x}}^2} + 2{\rm{x}} + 3} + \sqrt {2{{\rm{x}}^2} - 1} }} + \frac{{2{\rm{x}} + 4}}{{\sqrt {{x^2} - x + 2} + \sqrt {{x^2} - 3{\rm{x}} - 2} }} = 0\\
\Leftrightarrow \left( {2{\rm{x}} + 4} \right)\left( {\frac{1}{{\sqrt {2{{\rm{x}}^2} + 2{\rm{x}} + 3} + \sqrt {2{{\rm{x}}^2} - 1} }} + \frac{1}{{\sqrt {{x^2} - x + 2} + \sqrt {{x^2} - 3{\rm{x}} - 2} }}} \right) = 0\\
\Leftrightarrow x = - 2(Tm)
\end{array}$
 
Top Bottom