phương trình vô tỉ

N

nguyenbahiep1

1.2x211x+21=34x432x^2-11x+21=3\sqrt[3]{4x-4}



VT=2(x114)2+478>04x43>018(4x4)274(4x4)34x43+12=0t=4x43>0t614t324t+96=0(t2)2(t4+4t3+12t2+18t+24)=0t=2x=3t4+4t3+12t2+18t+24>0vo^nghimVT = 2(x-\frac{11}{4})^2 + \frac{47}{8} > 0 \Rightarrow \sqrt[3]{4x-4} > 0 \\ \\ \frac{1}{8}(4x-4)^2 - \frac{7}{4}(4x-4) - 3\sqrt[3]{4x-4}+12 = 0 \\ \\ t = \sqrt[3]{4x-4} > 0 \\ \\ t^6 -14t^3-24t+96 = 0 \Rightarrow (t-2)^2(t^4+4t^3+12t^2+18t+24) = 0 \\ \\ t = 2 \Rightarrow x =3 \\ \\ t^4+4t^3+12t^2+18t+24 > 0 \Rightarrow vô-nghiệm
 
B

braga

1. Ta thấy :
2x211x+21=2(x114)2+478>02x^{2}-11x+21 = 2( x- \frac{11}{4})^{2}+ \frac{47}{8} > 0 nên 34x43>0    x1>03\sqrt[3]{4x-4}> 0\iff x-1 > 0
Áp dụng bất đẳng thức CauchyCauchy, ta có :
2(x1)2+88(x1)2(x-1)^{2}+ 8 \geq 8(x-1)
(x1)+2+234(x1)3(x-1) +2+ 2 \geq 3\sqrt[3]{4(x-1)}
Cộng vế với vế, ta được :
2(x1)27(x1)+1234(x1)32 (x-1)^{2} - 7(x-1)+12\geq 3\sqrt[3]{4(x-1)}
    2x211x+2134(x1)3\iff 2x^{2}-11x +21\geq 3\sqrt[3]{4(x-1)}
Đẳng thức xảy ra khi x1=2    x=3x-1= 2 \iff x=3
 
B

braga

2.  pt    x222x+40+21(x4+x2+1)21=0    (x2)(x20)+21(x2)(x+2)(x2+5)21(x4+x2+1)+21=02. \ \ pt\iff x^2-22x+40+\sqrt{21(x^4+x^2+1)}-21=0 \\ \iff (x-2)(x-20)+\dfrac{21(x-2)(x+2)(x^2+5)}{\sqrt{21(x^4+x^2+1)}+21}=0
 
Top Bottom