b) $\sin{(\pi \cos{x})} = \cos{(\pi \sin{x})} \\
\Leftrightarrow \sin{(\cos{x})} = \cos{(\sin{x})} \\
\Leftrightarrow \cos{ \left ( \dfrac{\pi}{2} - cos{x} \right )} = \cos{(\sin{x})} \\
\Leftrightarrow
\left[\begin{matrix}
\dfrac{\pi}{2} - cos{x} = \sin{x} + k2 \pi \\ \dfrac{\pi}{2} - cos{x} = - \sin{x} + k2 \pi
\end{matrix}\right. \\
\Leftrightarrow
\left[\begin{matrix}
\sin{x} + cos{x} = \dfrac{\pi}{2} - k2 \pi \\ \sin{x} - cos{x} = - \dfrac{\pi}{2} + k2 \pi
\end{matrix}\right. \\
\Leftrightarrow
\left[\begin{matrix}
\sqrt{2} \cos{\left ( x - \dfrac{\pi}{4} \right )} = \dfrac{\pi}{2} - k2 \pi \\ - \sqrt{2} \cos{\left ( x + \dfrac{\pi}{4} \right )} = - \dfrac{\pi}{2} + k2 \pi
\end{matrix}\right. \\
$