\[\begin{array}{l}
\dfrac{{1 + \sin 2x + \cos 2x}}{{1 + {{\cot }^2}x}} = \sqrt 2 \sin x\sin 2x\\
\Leftrightarrow {\sin ^2}x\left( {1 + \sin 2x + \cos 2x} \right) = 2\sqrt 2 {\sin ^2}x\cos x\\
\Leftrightarrow {\sin ^2}x\left( {1 + 2\sin x\cos x + 2{{\cos }^2}x - 1 - 2\sqrt 2 \cos x} \right) = 0\\
\Leftrightarrow {\sin ^2}x\cos x\left( {\sin x + \cos x - \sqrt 2 } \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
{\sin ^2}x\cos x = 0\\
\sin x + \cos x = \sqrt 2
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = k\dfrac{\pi }{2},k \in Z\\
\sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} \right) = \sqrt 2
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = k\dfrac{\pi }{2},k \in Z\\
x + \dfrac{\pi }{4} = \dfrac{\pi }{2} + l2\pi ,l \in Z
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = k\dfrac{\pi }{2},k \in Z\\
x = \dfrac{\pi }{4} + l2\pi ,l \in Z
\end{array} \right.
\end{array}\]