

[tex]sin(\frac{\Pi }{4}+\frac{3x}{2})=2sin^{3}(\frac{3\Pi }{4}+\frac{x}{2})[/tex]
@kingsman(lht 2k2) @iceghost
@kingsman(lht 2k2) @iceghost
Last edited:
sin^3 x = 3sinx - sin3x chứ?[tex]sin\left ( \frac{\pi}{4}+\frac{3x}{2} \right )=\frac{3sin\left ( \frac{3\pi}{4}+\frac{x}{2} \right )-sin\left ( \frac{3\pi}{4}+\frac{3x}{2} \right )}{2}<=>2sin\left ( \frac{\pi}{4}+\frac{3x}{2} \right )-2sin\left ( \frac{3\pi}{4}+\frac{x}{2} \right )=sin\left ( \frac{3\pi}{4}+\frac{x}{2} \right )-sin\left ( \frac{3\pi}{4}+\frac{3x}{2} \right )<=>-2cos(\pi+2x)sin\left ( \frac{\pi}{2}-x \right )=cos\left ( \frac{3\pi}{2}+2x \right )sin(-x)<=>2cosx.cos2x=sinx.sin2x<=>cosx=0 \vee cos2x=sin^2x<=>1-2sin^2x=sin^2x=>sin^2x=\frac{1}{3}[/tex]
[tex]cos\left ( \frac{k\pi}{2}+\alpha \right )=sin\alpha[/tex] ( mk có dùng cái này )
Chỗ này mình ko hiểu[tex]sin\left ( \frac{\pi}{4}+\frac{3x}{2} \right )=\frac{3sin\left ( \frac{3\pi}{4}+\frac{x}{2} \right )-sin\left ( \frac{9\pi}{4}+\frac{3x}{2} \right )}{2}<=>2sin\left ( \frac{\pi}{4}+\frac{3x}{2} \right )-2sin\left ( \frac{3\pi}{4}+\frac{x}{2} \right )=sin\left ( \frac{3\pi}{4}+\frac{x}{2} \right )-sin\left ( \frac{9\pi}{4}+\frac{3x}{2} \right )<=>-4cos(\pi+2x)sin\left ( \frac{\pi}{2}-x \right )=-2cos\left ( \frac{3\pi}{2}+x \right )sin(3\pi+2x)=-2(-sinx).(-sin2x)<=>cos2xcosx=-sin^2x.cosx=>cosx=0 \vee cos2x=-sin^2x[/tex]
nhân chéo chueyenr vế ý
làm như bạn thì sinx= sin2x[tex]sin\left ( \frac{\pi}{4}+\frac{3x}{2} \right )=\frac{3sin\left ( \frac{3\pi}{4}+\frac{x}{2} \right )-sin\left ( \frac{9\pi}{4}+\frac{3x}{2} \right )}{2}<=>2sin\left ( \frac{\pi}{4}+\frac{3x}{2} \right )-2sin\left ( \frac{3\pi}{4}+\frac{x}{2} \right )=sin\left ( \frac{3\pi}{4}+\frac{x}{2} \right )-sin\left ( \frac{9\pi}{4}+\frac{3x}{2} \right )<=>-4cos(\pi+2x)sin\left ( \frac{\pi}{2}-x \right )=-2cos\left ( \frac{3\pi}{2}+x \right )sin(3\pi+2x)=-2(-sinx).(-sin2x)<=>cos2xcosx=-sin^2x.cosx=>cosx=0 \vee cos2x=-sin^2x[/tex]
vậy bạn biết làm chưalàm như bạn thì sinx= sin2x
cosx=cos2x à