Phương trình lượng giác cần gấp

C

conga222222

$\eqalign{
& {\sin ^4}x - {\cos ^4}x = \left| {\sin x} \right| + \left| {\cos x} \right| \cr
& D = R \cr
& (1) \leftrightarrow \left( {{{\sin }^2}x - {{\cos }^2}x} \right)\left( {{{\sin }^2}x + {{\cos }^2}x} \right) = \left| {\sin x} \right| + \left| {\cos x} \right| \cr
& \leftrightarrow \left( {\sin x - \cos x} \right)\left( {\sin x + \cos x} \right) = \left| {\sin x} \right| + \left| {\cos x} \right| \cr
& TH1:k2\pi \le x \le {\pi \over 2} + k2\pi \;(x\;thuoc\;goc\;phan\;tu\;thu\;nhat) \cr
& \to \left( 1 \right) \leftrightarrow \left( {\sin x - \cos x} \right)\left( {\sin x + \cos x} \right) = \sin x + \cos x \cr
& \leftrightarrow \left( {\sin x + \cos x} \right)\left( {\sin x - \cos x - 1} \right) = 0 \cr
& tuong\;tu\;xet\;x\;thuoc\;cac\;goc\;phan\;tu\;thu\;2\;3\;4 \cr} $
 
L

lan_phuong_000

$\sqrt{3}.sin2x - 2cos^2x = 2\sqrt{2 + 2cos2x}$

\Leftrightarrow $\sqrt{3}.sin2x - 2cos^2x = 2\sqrt{4.cos^2x}$

\Leftrightarrow $2\sqrt{3}.sinx.cosx - 2cos^2x = 4.|cosx|$

\Leftrightarrow $\left[\begin{matrix}2\sqrt{3}.sinx.cosx - 2cos^2x - 4cosx = 0 (x \in I,II)\\ 2\sqrt{3}.sinx.cosx - 2cos^2x + 4cosx = 0 (x \in III,IV) \end{matrix}\right.$

\Leftrightarrow $\left[\begin{matrix} cosx(2\sqrt{3}.sinx - 2cosx - 4) = 0 (x \in I,II)\\ cosx(2\sqrt{3}.sinx - 2cosx + 4) = 0 (x \in III,IV) \end{matrix}\right.$

\Leftrightarrow $\left[\begin{matrix} cosx(2\sqrt{3}.sinx - 2cosx - 4) = 0 (x \in I,II)\\ cosx(2\sqrt{3}.sinx - 2cosx + 4) = 0 (x \in III,IV) \end{matrix}\right.$

\Leftrightarrow $\left[\begin{matrix}cosx = 0\\ 2\sqrt{3}.sinx - 2cosx - 4 = 0 \\ 2\sqrt{3}.sinx - 2cosx + 4 = 0 \end{matrix}\right.$

\Leftrightarrow $\left[\begin{matrix}cosx = k\pi \\ sin(\dfrac{\pi}{6} - x) = 1 (x \in I,II) \\ sin(\dfrac{\pi}{6} - x) = - 1 (x \in III,IV)\end{matrix}\right.$
 
Top Bottom