$\sqrt{3}.sin2x - 2cos^2x = 2\sqrt{2 + 2cos2x}$
\Leftrightarrow $\sqrt{3}.sin2x - 2cos^2x = 2\sqrt{4.cos^2x}$
\Leftrightarrow $2\sqrt{3}.sinx.cosx - 2cos^2x = 4.|cosx|$
\Leftrightarrow $\left[\begin{matrix}2\sqrt{3}.sinx.cosx - 2cos^2x - 4cosx = 0 (x \in I,II)\\ 2\sqrt{3}.sinx.cosx - 2cos^2x + 4cosx = 0 (x \in III,IV) \end{matrix}\right.$
\Leftrightarrow $\left[\begin{matrix} cosx(2\sqrt{3}.sinx - 2cosx - 4) = 0 (x \in I,II)\\ cosx(2\sqrt{3}.sinx - 2cosx + 4) = 0 (x \in III,IV) \end{matrix}\right.$
\Leftrightarrow $\left[\begin{matrix} cosx(2\sqrt{3}.sinx - 2cosx - 4) = 0 (x \in I,II)\\ cosx(2\sqrt{3}.sinx - 2cosx + 4) = 0 (x \in III,IV) \end{matrix}\right.$
\Leftrightarrow $\left[\begin{matrix}cosx = 0\\ 2\sqrt{3}.sinx - 2cosx - 4 = 0 \\ 2\sqrt{3}.sinx - 2cosx + 4 = 0 \end{matrix}\right.$
\Leftrightarrow $\left[\begin{matrix}cosx = k\pi \\ sin(\dfrac{\pi}{6} - x) = 1 (x \in I,II) \\ sin(\dfrac{\pi}{6} - x) = - 1 (x \in III,IV)\end{matrix}\right.$