\[\begin{array}{l}
{\log _2}({x^2} + 3x + 2) + {\log _2}({x^2} + 7x + 12) = 3 + {\log _2}3\\
\Leftrightarrow \left\{ \begin{array}{l}
{x^2} + 3x + 2 > 0\\
{x^2} + 7x + 12 > 0\\
{\log _2}[({x^2} + 3x + 2)({x^2} + 7x + 12)] = {\log _2}(9.3)
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x < - 2 \vee x > - 1\\
x < - 4 \vee x > - 3\\
{x^4} + 10{x^3} + 35{x^2} + 50x - 3 = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x < - 4 \vee x > - 1\\
({x^2} + 5x + 5 + 2\sqrt 7 )({x^2} + 5x + 5 - 2\sqrt 7 ) = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x < - 4 \vee x > - 1\\
x = \frac{{ - 5 \pm \sqrt {8{\mkern 1mu} \sqrt 7 + 5} }}{2}
\end{array} \right.\\
\Leftrightarrow x = \frac{{ - 5 \pm \sqrt {8{\mkern 1mu} \sqrt 7 + 5} }}{2}
\end{array}\]