phương trình khó...

0

01263812493

tìm x,y,z thoả mãn(hệ đấy nhá)
[TEX] \left {\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+x+y+z=\frac{51}{4}\\ \frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+x^2+y^2+z^2=\frac{771}{16}[/TEX]

Đặt:
[TEX]\left{a=x+\frac{1}{x}\\b=y+\frac{1}{y}\\c=z+\frac{1}{z}[/TEX]

[TEX]Pt \Leftrightarrow \left{a+b+c=\frac{51}{4}\\a^2+b^2+c^2=\frac{771}{16}+6= \frac{867}{16}[/TEX]

BDt wen thuộc :D
[tex]3(a^2+b^2+c^2) \geq (a+b+c)^2[/tex]
[TEX]\Rightarrow "=".....[/TEX]
 
Last edited by a moderator:
D

daodung28

Đặt:
[TEX]\left{a=x+\frac{1}{x}\\b=y+\frac{1}{y}\\c=z+\frac{1}{z}[/TEX]

[TEX]Pt \Leftrightarrow \left{a+b+c=\frac{51}{4}\\a^2+b^2+c^2= \frac{2601}{16}[/TEX]

BDt wen thuộc :D

[TEX]\Rightarrow "=".....[/TEX]
sai rồi
[TEX](a+b+c)^2\leq3(a^2+b^2+c^2)\Leftrightarrow(\frac{51}{4})^2\leq3.\frac{2601}{16}\Leftrightarrow\frac{2601}{16}\leq3.\frac{2601}{16}[/TEX](hiển nhiên)
 
Top Bottom