Phương trình đường thẳng

  • Thread starter huytrungnghia099
  • Ngày gửi
  • Replies 2
  • Views 6,515

H

huytrungnghia099

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Bài 1

Trên mặt phẳng tọa độ oxy cho A(1;1). Hãy tìm điểm B trên đt y=3 và điểm C trên trục hoành sao cho tam giác ABC đều

Bài 2

Trên hệ trục oxy cho hình vuông ABCD có đỉnh A(-4;5) và một đường chéo đặt trên đt 7x-y+8=0. Lập pt các cạnh và đường chéo thứ hai của hình vuông đó
 
L

lp_qt

Bài 2

Trên hệ trục oxy cho hình vuông ABCD có đỉnh A(-4;5) và một đường chéo đặt trên đt 7x-y+8=0. Lập pt các cạnh và đường chéo thứ hai của hình vuông đó.

$A \notin d_1$ \Rightarrow 7x-y+8=0 là pt của đường chéo $BD$

Goị $\vec{n}(a;b)$ là vtpt của $AB$

$BD$ có vtcp $\vec{n_1}(1;7)$

$\widehat{ABD}=45^{\circ}$

\Rightarrow $cos(\vec{n};\vec{n_1})=cos(AB;BD)=cos45^{\circ}=\dfrac{1}{\sqrt{2}}$

$\Longrightarrow \dfrac{\left | a+7b \right |}{\sqrt{a^{2}+b^{2}}.\sqrt{1^{2}+7^{2}}}=\dfrac{1}{\sqrt{2}}$

\Leftrightarrow $\left | a+7b \right |=5.\sqrt{a^{2}+b^{2}}$

\Leftrightarrow $a^{2}+14ab+49b^{2}=25a^{2}+25b^{2}$

\Leftrightarrow $24a^{2}-14ab-24b^{2}=0$

\Leftrightarrow $(4a+3b)(3a-4b)=0$

\Leftrightarrow $\begin{bmatrix}3a=4b & \\ 4a=-3b& \end{bmatrix}$

• $3a=4b$ . Chọn $b=3$ \Rightarrow $a=4$

\Rightarrow pt $AB$ : 4x+3y+1=0

$B=AB \cap BD$ \Rightarrow tọa độ $B$

$AB=AD ; D \in BD$ \Rightarrow tọa độ $D$

gọi $I$ là trung điểm của $BD$ \Rightarrow tọa độ $I$

$I$ là trung điểm của $AC$ \Rightarrow tọa độ $C$

• $4a=-3b$ tương tự trường hợp trên
 
E

eye_smile

1,B(b;3)
C(c;0)
Tam giác ABC đều nên AB=BC=CA

\Leftrightarrow $(b-c)^2+9=(b-1)^2+4=(c-1)^2+1$

\Leftrightarrow $(b-c)^2+9=(b-1)^2+4$ và $(b-1)^2+4=(c-1)^2+1$

Đặt $x=b-1;y=c-1$

Hệ \Leftrightarrow $(x-y)^2+9=x^2+4$ và $x^2+4=y^2+1$

\Leftrightarrow $y^2-2xy+5=0$ và $x^2+3=y^2$

PT(1) \Rightarrow $x=\dfrac{y^2+5}{2y}$

Thay vào PT(2), đc:

$3y^4-22y^2-25=0$

Đến đây dễ rồi.
 
Top Bottom