phương pháp làm trội khó đey giúp mình ..............................

2

251295

Last edited by a moderator:
K

kachia_17

Bài 1:

[TEX]\huge \frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n^2}>1[/TEX]


[tex]\huge \frac{1}{n}+\frac{1}{n+1}+...+\frac{1}{n^2}= (\frac 1n+\frac 1{n+1} +\frac 1{n+2} +...\frac 1{n^2-n} )+(\frac 1{n^2-n+1}+\frac 1{n^2-n+2}+...+\frac 1{n^2}) > \begin{matrix} \underbrace{ (\frac 1{n^2-n}+\frac 1{n^2-n}+...+\frac 1{n^2-n})} \\ n^2-2n+1 \text{ so hang} \end{matrix} \ \ \ + \ \ \begin{matrix} \underbrace{ \frac 1{n^2}+\frac 1{n^2}+...+\frac 1{n^2} } \\ n \text{ so hang} \end{matrix}= (n^2-2n+1).\frac{1}{n^2-n}+n.\frac 1{n^2}=1[/tex]
 
Top Bottom