Cho tam giác ABC, gọi M,N lần lượt là trung điểm của BC,CA,AB và O là 1điểm t
ùy ý
CM a, vecto AM+BN+CP=0
b, vevcto OA +OB+OC=OM+ON+OP
a)Gọi G là trọng tâm tam giác ABC => [tex]\underset{AG}{\rightarrow}+\underset{BG}{\rightarrow}+\underset{CG}{\rightarrow}=0[/tex]
[tex]\underset{AM}{\rightarrow}+\underset{BN}{\rightarrow}+\underset{CP}{\rightarrow}=\frac{3.\underset{CG}{\rightarrow}}{2}+\frac{3.\underset{BG}{\rightarrow}}{2}+\frac{3.\underset{AG}{\rightarrow}}{2}=0[/tex]
b)Ta có:[tex]\underset{OA}{\rightarrow}+\underset{OB}{\rightarrow}+\underset{OC}{\rightarrow}-\underset{OM}{\rightarrow}-\underset{ON}{\rightarrow}-\underset{OP}{\rightarrow}=(\underset{OA}{\rightarrow}-\underset{OM}{\rightarrow})+(\underset{OB}{\rightarrow}-\underset{ON}{\rightarrow})+(\underset{OC}{\rightarrow}-\underset{OP}{\rightarrow})=\underset{AM}{\rightarrow}+\underset{BN}{\rightarrow}+\underset{CP}{\rightarrow}=0[/tex]