1) 8040x^4 + 2010
2) x^8 + 98x^4 + 1
3) (x-y)^5 + (y-z)^5 + (z-x)^5
Bài 2 đặt như thế thì ra căn dài, mà lại không triệt để
Bài 1:
$8040x^4+2010$
$=2010(4x^4+1)$
$=2010(4x^4+4x^2+1-4x^2)$
$=2010[(2x^2+1)^2-4x^2]$
$=2010(2x^2+2x+1)(2x^2-2x+1)$
Bài 2:
$x^8+98x^4+1$
$=(x^8+16x^6+66x^4+16x^2+1)-(16x^6-32x^4+16x^2)$
$=[(x^8+2x^4+1)+(16x^6+16x^2)+64x^4]-(4x^3-4x)^2$
$=[(x^4+1)^2+16x^2(x^4+1)+64x^4]-(4x^3-4x)^2$
$=(x^4+8x^2+1)^2-(4x^3-4x)^2$
$=(x^4+4x^3+8x^2-4x+1)(x^4-4x^3+8x^2+4x+1)$
Bài 3:
$(x-y)^5+(y-z)^5+(z-x)^5$ (*)
$=(x-y)^5+(y-z)^5-(x-z)^5$
$=(x-y)^5+(y-z)^5-(x-y+y-z)^5$
Đặt $x-y=a; y-z=b$ vào, ta có
(*) $ = a^5+b^5-(a+b)^5$
$=(a+b)(a^4-a^3b+a^2b^2-ab^3+b^4)-(a+b)^5$
$=(a+b)[a^4-a^3b+a^2b^2-ab^3+b^4-(a+b)^4]$
$=(a+b)(a^4-a^3b+a^2b^2-ab^3+b^4-a^4-4a^3b-6a^2b^2-4ab^3-b^4)$
$=(a+b)(-5a^3b-5a^2b^2-5ab^3)$
$=-5ab(a+b)(a^2+ab+b^2)$
Thay $a=x-y; b=y-z$ vào, ta có
(*) $=-5(x-y)(y-z)(x-y+y-z)[(x-y)^2+(x-y)(y-z)+(y-z)^2]$
$=-5(x-y)(y-z)(x-z)(x^2-2xy+y^2+xy-xz-y^2+yz+y^2-2yz+z^2)$
$=5(x-y)(y-z)(z-x)(x^2+y^2+z^2-xy-xz-yz)$