$ P = 1 - \frac{1}{2017 . 2016} - \frac{1}{2016 . 2015} - \frac{1}{2015 . 2014} - ... - \frac{1}{3 . 2} - \frac{1}{2 . 1} \\ = 1 - \left ( \frac{1}{2016 . 2017} + \frac{1}{2015 . 2016} + \frac{1}{2014 . 2015} + ... + \frac{1}{2 . 3} + \frac{1}{1 . 2} \right ) \\ = 1 - \left ( \frac{1}{2016} - \frac{1}{2017} + \frac{1}{2015} - \frac{1}{2016} + \frac{1}{2014} - \frac{1}{2015} + ... + \frac{1}{2} - \frac{1}{3} + 1 - \frac{1}{2}\right ) \\ = 1 - \left ( 1 - \frac{1}{2017} \right ) \\ = 1 - 1 + \frac{1}{2017} \\ = \frac{1}{2017} $