$f(x) =
\left\{\begin{matrix}
\dfrac{x^2-3x+2}{x^2-2x} \ \ (x < 2) \\ ax+a+1 \ \ (x \geq 2)
\end{matrix}\right.
$
Hàm số liên tục trên $\mathbb{R}$ $\Leftrightarrow$ $\displaystyle \lim_{x \rightarrow 2^-} f(x)= \lim_{x \rightarrow 2^+} f(x) = f(2)$
$\displaystyle \lim_{x \rightarrow 2^-} f(x)= \lim_{x \rightarrow 2^-} \dfrac{x^2-3x+2}{x^2-2x} \\
\displaystyle = \lim_{x \rightarrow 2^-} \dfrac{(x-1)(x-2)}{x(x-2)} \\
\displaystyle = \lim_{x \rightarrow 2^-} \dfrac{x-1}{x} = \dfrac{1}{2}$
$\displaystyle \lim_{x \rightarrow 2^+} f(x)= \lim_{x \rightarrow 2^+} (ax+a+1)=2a+a+1=3a+1$
$f(2)=3a+1$
Yêu cầu bài toán $\Leftrightarrow 3a+1 = \dfrac{1}{2} \Leftrightarrow a = .....$