Xét tam giác ABC vuông tại A, AB<AC, góc C=[tex]\alpha[/tex]<45 độ, đường trung tuyến AM, đường cao AH, MA=MB=MC=a. Chứng minh các cơng thức
[tex]a. sin2\alpha=2sin\alpha .cos\alpha[/tex]
[tex]b. 1+cos2\alpha =2cos^{2}\alpha[/tex]
[tex]c. 1-cos2\alpha =2sin^{2}\alpha[/tex]
a) $\triangle AMC$ cân tại $M$ nên $\widehat{MAC}=\alpha \Rightarrow \widehat{AMH}=\widehat{MAC}+\widehat{MCA}=2\alpha$
$\triangle AHC$ vuông tại $H$ có $\sin \alpha =\dfrac{AH}{AC};\cos \alpha =\dfrac{HC}{AC}$
$\Rightarrow 2\sin \alpha . \cos \alpha =\dfrac{2AH.HC}{AC^2}=\dfrac{2AH.HC}{BC.HC}=\dfrac{2AH}{2a}=\dfrac{AH}a$
$\triangle AHM$ vuông tại $H$ có $\sin 2\alpha =\dfrac{AH}{AM}=\dfrac{AH}a$
b) $1+\cos 2\alpha =1+\dfrac{HM}{AM}=\dfrac{AM+HM}{AM}=\dfrac{a+AM}a=\dfrac{HC}a$
$2\cos^2 \alpha =\dfrac{2HC^2}{AC^2}=\dfrac{2HC^2}{HC.BC}=\dfrac{2HC}{2a}=\dfrac{HC}a$
c) $1-\cos 2\alpha =1-\dfrac{HM}{AM}=\dfrac{AM-HM}{AM}=\dfrac{a-(HC-a)}a=2-\dfrac{HC}a$
$2\sin^2 \alpha =\dfrac{2AH^2}{AC^2}=\dfrac{2(AC^2-HC^2)}{AC^2}=2-\dfrac{2HC^2}{AC^2}=2-\dfrac{2HC^2}{HC.2a}=2-\dfrac{HC}a$