57: Cho [tex]x=1\Rightarrow 1^n=a_{0}+a_{1}+a_{2}+...+a_{2n}\: \: (1)[/tex]
Cho [tex]x=-1\Rightarrow 3^{n}=a_{0}-a_{1}+a_{2}-a_{3}+...+a_{2n}\: \: (2)[/tex]
Cộng vế với vế của (1) và (2):
[tex]3^{n}+1=2(a_{0}+a_{2}+...+a_{2n})[/tex]
Đáp án A
42: Số hạng tổng quát:
[tex]\left ( x^{2}+3x^{-1} \right )^{12}=C_{12}^{k}3^{k}x^{24-3k}[/tex]
[tex](2x^{3}+x^{-2})^{21}=C_{21}^{i}2^{i}.x^{5i-42}[/tex]
May mắn là không có số hạng nào trái dấu nên ta chỉ cần xem có bao nhiêu số hạng cùng lũy thừa
[tex]\left\{\begin{matrix} 24-3k=5i-42 & \\ 0\leq k\leq 12 & \\ 0\leq i\leq 21 & \end{matrix}\right.[/tex] [tex]\Rightarrow i=\frac{66-3k}{5}[/tex]
Ta thấy có 3 giá trị nguyên thỏa mãn, vậy có 3 số hạng cùng lũy thừa
Vậy số số hạng của khai triển là: [tex]13+22-3=32[/tex]