16.
$\dfrac{x^3-y^3}{x^2y-xy^2}-\dfrac{x^3+y^3}{x^2y+xy^2}-\left ( \dfrac{x}y-\dfrac{y}x \right )\left ( \dfrac{x+y}{x-y}+\dfrac{x-y}{x+y} \right )\\=\dfrac{(x-y)(x^2+xy+y^2)}{xy(x-y)}-\dfrac{(x+y)(x^2-xy+y^2)}{xy(x+y)}-\dfrac{x^2-y^2}{xy}\cdot \dfrac{(x+y)^2-(x-y)^2}{(x+y)(x-y)}\\=\dfrac{x^2+xy+y^2}{xy}-\dfrac{x^2-xy+y^2}{xy}-\dfrac{x^2-y^2}{xy}\cdot\dfrac{4xy}{x^2-y^2}\\=\dfrac{2xy}{xy}-4\\=2-4\\=-2$
17. Làm theo hướng dẫn:
$x^2+1=x^2+xy+yz+zx=x(x+y)+z(x+y)=(x+y)(z+x)$
$y^2+1=y^2+xy+yz+zx=y(x+y)+z(x+y)=(x+y)(y+z)$
$z^2+1=z^2+zx+xy+yz=z(z+x)+y(x+z)=(y+z)(z+x)$
$P=\dfrac{(x+y)^2(y+z)^2(z+x)^2}{(z^2+1)(x^2+1)(y^2+1)}=\dfrac{(x+y)^2(y+z)^2(z+x)^2}{(x+y)(z+x)(x+y)(y+z)(y+z)(z+x)}=1$
Nếu có thắc mắc bạn cứ hỏi tại đây, tụi mình sẽ hỗ trợ.