Đặt [tex]\frac{1}{x^2}+1=t^2\Rightarrow -2x^{-3}dx=2tdt\Rightarrow x^{-3}dx=-tdt[/tex]
[tex]\frac{1}{x^2}+1=t^2\Rightarrow \left\{\begin{matrix} \frac{x}{\sqrt{1+x^2}}=\frac{1}{t} & \\ x^{-2}=t^2-1 & \end{matrix}\right.[/tex]
[tex]I=\int \frac{x^{-4}dx}{\sqrt{1+x^2}}=\int \frac{x}{\sqrt{1+x^2}}.x^{-2}.x^{-3}dx=\int \frac{1}{t}(t^2-1)(-dt)=\int \left ( \frac{1}{t}-t \right )dt[/tex]
[tex]=ln|t|-\frac{t^2}{2}+C=ln\left | \frac{\sqrt{x^2+1}}{x} \right |-\frac{1+x^2}{2x^2}+C[/tex]