nguyên hàm

J

jelouis

$$I=\int \frac{sinxcosxdx}{a^2sin^2x+b^2cos^2x}=\int \frac{sinxcosxdx}{(a^2-b^2)sin^2x+b^2}$$
$$=\frac{1}{2(a^2-b^2)}\int\frac{d((a^2-b^2)sin^2x+b^2)}{(a^2-b^2)sin^2x+b^2}$$
$$=\frac{1}{2(a^2-b^2)}ln|(a^2-b^2)sin^2x+b^2|+C$$
 
Top Bottom