nguyên hàm

T

tuyn

[TEX]\int {\frac{{{{\tan }^4}x}}{{c{\rm{os}}2{\rm{x}}}}d{\rm{x}}} [/TEX]
[TEX]=\int \frac{tan^4x}{2cos^2x-1}dx=\int \frac{tan^4x}{cos^2x(\frac{2}{cos^2x}-1}dx[/TEX]
[TEX]=\int \frac{tan^4x}{1+2tan^2x}d(tanx)=\frac{1}{4} \int \frac{(4tan^4x-1)+1}{1+tan^2x}d(tanx)=\frac{1}{4} \int [2tan^2x-1+\frac{1}{1+2tan^2x}]d(tanx)[/TEX]
[TEX]=\frac{1}{4} [\frac{2}{3}tan^3x-tanx+\frac{1}{\sqrt{2}} arctan(\sqrt{2}tanx)]+C[/TEX]
 
Top Bottom