Toán 9 Nghiệm Nguyên

kido2006

Cựu TMod Toán
Thành viên
26 Tháng một 2018
1,693
2
2,652
401
Bắc Ninh
THPT Chuyên Bắc Ninh
tìm nghiệm nguyên dương: 29(x+3y)=5(2x^2+x^2y+x+6xy+3y)
[tex]29(x+3y)=5(2x^2+x^2y+x+6xy+3y)[/tex]
[tex]\Leftrightarrow (-5x^2-30x+72)y=10x^2-24x[/tex]
Xét [tex]5x^2+30x-72=0\Rightarrow[/tex] loại do x nguyên dương
Xét [tex]5x^2+30x-72\neq 0[/tex]
[tex]\Leftrightarrow y=\frac{-2(5x^2-12x)}{5x^2+30x-72}[/tex]
Vì y nguyên dương [tex]\Rightarrow y=\frac{-2(5x^2-12x)}{5x^2+30x-72}>0\Rightarrow \left\{\begin{matrix} -2(5x^2-12x)>0\\ 5x^2+30x-72>0 \end{matrix}\right.[/tex] hoặc [tex]\left\{\begin{matrix} -2(5x^2-12x)<0\\ 5x^2+30x-72<0 \end{matrix}\right.[/tex]
TH1: [tex]\left\{\begin{matrix} -2(5x^2-12x)>0\\ 5x^2+30x-72>0 \end{matrix}\right.\Rightarrow \left\{\begin{matrix} 0 < x < \frac{12}{5}\\ \frac{-15-3\sqrt{65}}{5} > x,or,x > \frac{-15+3\sqrt{65}}{5} \end{matrix}\right. \Rightarrow x=2\Rightarrow [/tex][tex]y=1[/tex]
TH2: [tex]\left\{\begin{matrix} -2(5x^2-12x)<0\\ 5x^2+30x-72<0 \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x > \frac{12}{5}\\ \frac{-15-3\sqrt{65}}{5} < x < \frac{-15+3\sqrt{65}}{5} \end{matrix}\right.[/tex] (vô nghiệm)
Vậy x=2;y=1
 

Darkness Evolution

Duke of Mathematics
Thành viên
27 Tháng năm 2020
620
1,104
146
17
Vĩnh Phúc
THCS Vĩnh Yên
[tex]29(x+3y)=5(2x^2+x^2y+x+6xy+3y)[/tex]
[tex]\Leftrightarrow (-5x^2-30x+72)y=10x^2-24x[/tex]
Xét [tex]5x^2+30x-72=0\Rightarrow[/tex] loại do x nguyên dương
Xét [tex]5x^2+30x-72\neq 0[/tex]
[tex]\Leftrightarrow y=\frac{-2(5x^2-12x)}{5x^2+30x-72}[/tex]
Vì y nguyên dương [tex]\Rightarrow y=\frac{-2(5x^2-12x)}{5x^2+30x-72}>0\Rightarrow \left\{\begin{matrix} -2(5x^2-12x)>0\\ 5x^2+30x-72>0 \end{matrix}\right.[/tex] hoặc [tex]\left\{\begin{matrix} -2(5x^2-12x)<0\\ 5x^2+30x-72<0 \end{matrix}\right.[/tex]
TH1: [tex]\left\{\begin{matrix} -2(5x^2-12x)>0\\ 5x^2+30x-72>0 \end{matrix}\right.\Rightarrow \left\{\begin{matrix} 0 < x < \frac{12}{5}\\ \frac{-15-3\sqrt{65}}{5} > x,or,x > \frac{-15+3\sqrt{65}}{5} \end{matrix}\right. \Rightarrow x=2\Rightarrow [/tex][tex]y=1[/tex]
TH2: [tex]\left\{\begin{matrix} -2(5x^2-12x)<0\\ 5x^2+30x-72<0 \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x > \frac{12}{5}\\ \frac{-15-3\sqrt{65}}{5} < x < \frac{-15+3\sqrt{65}}{5} \end{matrix}\right.[/tex] (vô nghiệm)
Vậy x=2;y=1
Đi theo hướng khác =)
$29(x+3y)=5(2x^2+x^2y+x+6xy+3y)=10x(x+3y)+5y(x^2+3)+5x$
$\Leftrightarrow (29-10x)(x+3y)=5y(x^2+3)+5x$
Hiển nhiên, ta có $29-10x>0$
Mà $x$ là số nguyên dương nên $x=1$ hoặc $x=2$
+) $x=1$ thì ta được $19(1+3y)=20y+5$ (Loại vì $19+57y>20y+5 \forall y>0$)
+) $x=2$ thì ta có $9(2+3y)=35y+10$. Tính được $y=1$
Vậy $x=2, y=1$
 
Top Bottom