tìm nghiệm nguyên dương: 29(x+3y)=5(2x^2+x^2y+x+6xy+3y)
[tex]29(x+3y)=5(2x^2+x^2y+x+6xy+3y)[/tex]
[tex]\Leftrightarrow (-5x^2-30x+72)y=10x^2-24x[/tex]
Xét [tex]5x^2+30x-72=0\Rightarrow[/tex] loại do x nguyên dương
Xét [tex]5x^2+30x-72\neq 0[/tex]
[tex]\Leftrightarrow y=\frac{-2(5x^2-12x)}{5x^2+30x-72}[/tex]
Vì y nguyên dương [tex]\Rightarrow y=\frac{-2(5x^2-12x)}{5x^2+30x-72}>0\Rightarrow \left\{\begin{matrix} -2(5x^2-12x)>0\\ 5x^2+30x-72>0 \end{matrix}\right.[/tex] hoặc [tex]\left\{\begin{matrix} -2(5x^2-12x)<0\\ 5x^2+30x-72<0 \end{matrix}\right.[/tex]
TH1: [tex]\left\{\begin{matrix} -2(5x^2-12x)>0\\ 5x^2+30x-72>0 \end{matrix}\right.\Rightarrow \left\{\begin{matrix} 0 < x < \frac{12}{5}\\ \frac{-15-3\sqrt{65}}{5} > x,or,x > \frac{-15+3\sqrt{65}}{5} \end{matrix}\right. \Rightarrow x=2\Rightarrow [/tex][tex]y=1[/tex]
TH2: [tex]\left\{\begin{matrix} -2(5x^2-12x)<0\\ 5x^2+30x-72<0 \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x > \frac{12}{5}\\ \frac{-15-3\sqrt{65}}{5} < x < \frac{-15+3\sqrt{65}}{5} \end{matrix}\right.[/tex] (vô nghiệm)
Vậy x=2;y=1