$A=\dfrac{2+\sqrt{3}}{\sqrt{\sqrt 2(2+\sqrt{4+2\sqrt{3}})}}+\dfrac{2-\sqrt{3}}{\sqrt{\sqrt 2(2-\sqrt{4-2\sqrt{3}})}}
\\=\dfrac{2+\sqrt{3}}{\sqrt{\sqrt 2(2+\sqrt{(\sqrt{3}+1)^2})}}+\dfrac{2-\sqrt{3}}{\sqrt{\sqrt 2(2-\sqrt{(\sqrt{3}-1)^2})}}
\\=\dfrac{2+\sqrt{3}}{\sqrt{\sqrt{2}(3+\sqrt{3})}}+\dfrac{2-\sqrt{3}}{\sqrt{\sqrt{2}(3-\sqrt{3})}}
\\=\dfrac{2+\sqrt{3}}{\sqrt{3\sqrt 2+\sqrt{6}}}+\dfrac{2-\sqrt{3}}{\sqrt{3\sqrt 2-\sqrt{6}}}
\\\Rightarrow A^2=\dfrac{7+4\sqrt{3}}{3\sqrt{2}+\sqrt{6}}+\dfrac{7-4\sqrt{3}}{3\sqrt{2}-\sqrt{6}}+\dfrac{2(2+\sqrt{3})(2-\sqrt{3})}{\sqrt{(3\sqrt{2}+\sqrt{6})(3\sqrt{2}-\sqrt{6})}}
\\=\dfrac{(7+4\sqrt{3})(3\sqrt{2}-\sqrt{6})+(7-4\sqrt{3})(3\sqrt{2}+\sqrt{6})}{(3\sqrt{2}+\sqrt{6})(3\sqrt{2}-\sqrt{6})}+\dfrac{2}{\sqrt{18-6}}
\\=\dfrac{21\sqrt{2}-7\sqrt{6}+12\sqrt{6}-12\sqrt{2}+21\sqrt{2}+7\sqrt{6}-12\sqrt{6}-12\sqrt{2}}{18-6}+\dfrac{2}{\sqrt{12}}
\\=\dfrac{18\sqrt 2}{12}+\dfrac{2}{\sqrt{12}}=\dfrac{18\sqrt 2+4\sqrt 3}{12}=\dfrac{54\sqrt 2+12\sqrt 3}{36}
\\\Rightarrow A=\dfrac{\sqrt{54\sqrt{2}+12\sqrt{3}}}{6}$