ĐK: $xy >0; x \ne y$
a)
$\begin{aligned} P& =\dfrac{x}{\sqrt{xy}+y} +\dfrac{y}{\sqrt{xy}-x}-\dfrac{x+y}{\sqrt{xy}} \\ &=\left( \dfrac{x}{\sqrt{xy}+y} -\dfrac{\sqrt{x}}{\sqrt{y}} \right ) + \left( \dfrac{y}{\sqrt{xy}-x} -\dfrac{\sqrt{y}}{\sqrt{x}} \right ) \\ &=\dfrac{-\sqrt{xy}}{\sqrt{y}(\sqrt{x}+\sqrt{y})} +\dfrac{\sqrt{xy}}{\sqrt{x}(\sqrt{y}-\sqrt{x})} \\ &=\dfrac{-\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{\sqrt{y}}{\sqrt{y}-\sqrt{x}} \\ &=\dfrac{x+y}{y-x} \end{aligned}$
b) $\dfrac{x}{y}=\dfrac{x+1}{y+5} \iff 5x=y$
Thay vào $P$ được $P= \dfrac{3}{2}$ có giá trị không đổi