;)nâng cao:D

N

nhox_rain

cm từ vế phải. dùng hằng đẳng thức.
Vp: (1/a+1/b+1/c)^2=1/a^2+1/b^2+1/c^2+2(1/ab+1/ac+1/bc)=1/a^2+1/b^2+1/c^2+((c+b+a)/abc))
=1/a^2+1/b^2+1/c^2+0=VT (đpcm)
 
N

ngovietthang

cm từ vế phải. dùng hằng đẳng thức.
Vp: (1/a+1/b+1/c)^2=1/a^2+1/b^2+1/c^2+2(1/ab+1/ac+1/bc)=1/a^2+1/b^2+1/c^2+((c+b+a)/abc))
=1/a^2+1/b^2+1/c^2+0=VT (đpcm)

[TEX]Vp=(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc})=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{c+b+a}{abc} =\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+0=VT [/TEX]
Ban viet kho dich qua
 
Top Bottom