Một số thuật toán với máy casio

V

vuhoanghuy61

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

TÍNH DÃY SỐ
Thuật toán:

Cách 1: Hơi dở vì sử dụng nhiều biến, xử lý vấn đề chậm nhưng ngắn gọn về thuật toán:
Nhập thuật toán:
E=E+1:A=2B+C-D: D=C:C=B:B=A
CALC
E? ấn 3==
B? ấn 3=
C? ấn 2=
D? ấn 1=
= = = ...

Cách 2: Hay hơn cách 1 vì sử dụng ít biến, xử lý vấn đề nhanh nhưng thuật toán dài dòng:
Nhập thuật toán:
D=D+1:A=2B+C-3A: D=D+1:C=2A+B-3C: D=D+1:B=2C+A-3B
CALC
D? ấn 3==
B? ấn 3=
C? ấn 2=
A? ấn 1=

Cách 3 (Dùng cho 500MS)
1 |shift| |sto| |C|
2 |shift| |sto| |B|
3 |shift| |sto| |A|
2 |alpha| |A|+|alpha| |B|-|alpha| |C| |shift| |sto| |C| U4
2 |alpha| |C|+|alpha| |A|-|alpha| |B| |shift| |sto| |B| U5
2 |alpha| |B|+|alpha| |C|-|alpha| |A| |shift| |sto| |A| U6
replay(tam giác phía trên) hai lần |shift| |replay|= /= /...
thuật toán tuy dài nhưng số dấu bằng ít hơn
Nếu ngại phải đếm thì sau dòng thứ tư cho thêm |alpha| |D| |alpha| = (màu tím)|alpha| |D|+3 và thêm vào sau dòng thứ ba 4 |shift| |sto| |D|; thêm một lần ấn replay nữa (tui viết cho 500MS)
 
H

hocviencsnd

TÍNH DÃY SỐ
Thuật toán:

Cách 1: Hơi dở vì sử dụng nhiều biến, xử lý vấn đề chậm nhưng ngắn gọn về thuật toán:
Nhập thuật toán:
E=E+1:A=2B+C-D: D=C:C=B:B=A
CALC
E? ấn 3==
B? ấn 3=
C? ấn 2=
D? ấn 1=
= = = ...

Cách 2: Hay hơn cách 1 vì sử dụng ít biến, xử lý vấn đề nhanh nhưng thuật toán dài dòng:
Nhập thuật toán:
D=D+1:A=2B+C-3A: D=D+1:C=2A+B-3C: D=D+1:B=2C+A-3B
CALC
D? ấn 3==
B? ấn 3=
C? ấn 2=
A? ấn 1=

Cách 3 (Dùng cho 500MS)
1 |shift| |sto| |C|
2 |shift| |sto| |B|
3 |shift| |sto| |A|
2 |alpha| |A|+|alpha| |B|-|alpha| |C| |shift| |sto| |C| U4
2 |alpha| |C|+|alpha| |A|-|alpha| |B| |shift| |sto| |B| U5
2 |alpha| |B|+|alpha| |C|-|alpha| |A| |shift| |sto| |A| U6
replay(tam giác phía trên) hai lần |shift| |replay|= /= /...
thuật toán tuy dài nhưng số dấu bằng ít hơn
Nếu ngại phải đếm thì sau dòng thứ tư cho thêm |alpha| |D| |alpha| = (màu tím)|alpha| |D|+3 và thêm vào sau dòng thứ ba 4 |shift| |sto| |D|; thêm một lần ấn replay nữa (tui viết cho 500MS)

Cái này chỉ dành cho những bạn thi máy tính bỏ túi thôi chứ học bình thường dùng cái này là gì ?? :D
Bạn đưa ra cái này làm gì ? Mong chỉ dùm....?

P/S: Học máy tính này 4 năm rồi nên không nhớ .....1 thời oai hùng với cuộc thi máy tính bỏ túi =))
 
H

hoanghuy1999ct

Hay ghê ta còn bài nào không gửi lên đi để chờ mãi
 
Last edited by a moderator:
V

vuhoanghuy61

Đúng là bài máy tính bỏ túi nhưng không nhất thiêt là bài học để thi có thể áp dụng cho cả trên lớp đấy
 
V

vuhoanghuy61

Tìm n chữ số tận cùng của một luỹ thừa:
Để tìm n chữ số tận cùng của 1 luỹ thừa , ta tìm dư của luỹ thừa đó với 10^n
Heheh , có phải rất hay không nào .
Tuy nhiên . Nếu người ta kiu tìm từ 1 đến 3 chữ số tận cùng của một luỹ thừa mà ta làm theo bài học trên thì thật là , quá oải . Chính vì thế , tui xin post một bài như sau :
_ Tìm 1 chữ số tận cùng của a^n :
* Nếu a có chữ số tận cùng là 0 , 1 , 5 hoặc 6 thì a^n lần lượt có chữ số tận cùng là 0 , 1 , 5 hoặc 6 .
* Nếu a có chữ số tận cùng là 2 , 3 hoặc 7 , ta có nhận xét sau với k thuộc tập hợp số tự nhiên khác 0 :
2^4k đồng dư 6 ( mod 10 )
3^4k đồng dư 1 ( mod 10 )
7^4k đồng dư 1 ( mod 10 )
Do đó để tìm 1 chữ số tận cùng của a^n với a có số tận cùng là 2 , 3 , 7 ta lấy n chia cho 4 . Giả sử n = 4k + r với r thuộc { 0 , 1 , 2 , 3 }
Nếu a đồng dư 2 ( mod 10 ) thì a^2 dồng dư 2^n = 2^(4k+r) đồng dư 6.2^r ( mod 10 )
Nếu a đồng dư 3 ( mod 10 ) thì a^n = a^(4k+r) đồng dư a^r ( mod 10 )
_ Tìm 2 chữ số tận cùng của a^n
Ta có nhận xét sau :
2^20 đồng dư 76 ( mod 100 )
3^20 đồng dư 1 ( mod 100 )
6^5 đồng dư 76 ( mod 100 )
7^4 đồng dư 01 ( mod 100 )
Mà 76^n đồng dư 76 ( mod 100 ) với n >= 1
và 5^n đồng dư 25 ( mod 100 ) với n >= 2
Suy ra kết quả sau với k là các số tự nhiên khác 0 :
a^20k đồng dư 00 ( mod 100 ) nếu a đồng dư 0 ( mod 10 )
a^20k đồng dư 01 ( mod 100 ) nếu a đồng dư 1 ; 3 ; 7 ; 9 ( mod 10 )
a^20k đồng dư 25 ( mod 100 ) nếu a đồng dư 5 ( mod 10 )
a^20k đồng dư 76 ( mod 100 ) nếu a đồng dư 2 ; 4 ; 6 ; 8 ( mod 10 )
Vậy túm lại , để tìm 2 chữ số tận cùng của a^n ta lấy số mũ 2 chia cho 20
_ Ta có :
a^100k đồng dư 000 ( mod 10^3 ) nếu a đồng dư 0 ( mod 10 )
a^100k đồng dư 001 ( mod 10^3 ) nếu a đồng dư 1 ; 3 ; 7 ; 9 ( mod 10 )
a^100k đồng dư 625 ( mod 10^3 ) nếu a đồng dư 5 ( mod 10 )
a^100k đồng dư 376 ( mod 10^3 ) nếu a đồng dư 2 ; 4 ; 6 ; 8 ( mod 10 )
Túm lại , để tìm 3 chữ số tận cùng của 1 luỹ thừa , ta tìm 2 chữ số tận cùng của số mũ .
Nhưng dù sao đi chăng nữa thì cái nguyên tắc
Để tìm n chữ số tận cùng của a^b thì ta tìm số dư của a^b với 10^n
 
V

vuhoanghuy61

Một số bài toán liên quan đến tính tổng
VD: Sn=1^3+2^3+3^3+...+(n-1)^3+n^3.Tính S30 ?
Thuật toán:

Cách 1: Dùng chức năng có sẵn\sum_{i=1}^k a_i^n ,bấm quy trình sau (fx 570ES):

|shift| |log_□| |ALPHA| |X^| |Replay| |→| |1| |Replay| |→| |30| |=|

Đọc kết quả S30

Cách 2: Nhập biểu thức sau vào màn hình máy tính ( fx570MS, fx570ES):

X=X+1:A=A+X^3

Bấm CALC máy hỏi:

X? Bấm 0=
A? Bấm 0=
===……

Trong đó X là tổng thứ X; A là giá trị của tổng thứ X.
 
V

vuhoanghuy61

C- DẠNG 3: SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN
1.Đổi số thập phân vô hạn tuần hoàn khi biết chu kì ra phân số hoặc hỗn số:
2. tìm chữ số thập phân thứ n sau dấu phẩy.
Khi ta chia một số tự nhiên cho một số tự nhiên, kết quả thu được là một số thập phân hữu hạn hay một số thập phân vô hạn tuần hoàn. Do màn hình chỉ hiện được 10 chữ số cho nên có lúc ta không thể xác định được tất cả các chữ số thập phân của số thập phân vô hạn tuần hoàn. Vì thế ta cần thực hiện các phép biến đổi toán học kết hợp với máy tính để tìm ra kết quả của bài toán.
Ví dụ : Chữ số thập phân thứ 2003 sau dấu phẩy là số nào khi ta chia 1 cho 23.
Giải: Ta có 1 : 23 = 0,04347826a1a2…..an= ( lần 1)
lần 1 ta xác định được 8 chữ số thập phân sau dâu phẩy, lân 2 ta tiếp tục xác định được 8 chữ số thập phân kế tiếp, sau vài lần ta sẽ xác định được chu kì của số thập phân vô hạn tuần hoàn.ta không ghi chữ số thập phân cuối cùng để tránh trương hợp máylàm tròn.
Từ đó ta suy ra 1:23 = 0,(0434782608695652173913) . từ đó suy ra số thập phân thứ 22k là số 3; số thập phân thứ 22k + 1 là số 0 ; số thập phân thứ 22k +2 là số 4; số thập phân thứ 22k +3 là số 3; số thập phân thứ 22k + 4 là số 4…
Mà 2003 = 22.91+1 vì vậy khi ta chia 1 cho 23 thì chữ số thập phân thứ 2003 sau dấu phẩy là số 1.
Bài tập áp dụng:
Bài1: Đổi các số thập phân vô hạn tuần hoàn sau đây ra hỗn số : 2,(7); 1,(23); 3,1(69); 3,(456)
Bài 2: a) Tìm chữ số thập phân thứ 2003 sau dấu phẩy của phép chia 2 cho 29.
b) Tìm chữ số thập phân thứ 2003 sau dấu phẩy của phép chia 3 cho 53.
c) Tìm chữ số thập phân thứ 2003 sau dấu phẩy của phép chia 5 cho 61.
Bài 3: (Thi trắc nghiệm học sinh giỏi toàn nước Mỹ ,1965) số thập phân vô hạn tuần hoàn 0,363636….. được viết dưới dạng số thập phân tối giản. thế thì tổng và tử là bao nhiêu?
Bài 4: ( Thi học sinh giỏi toàn các vùng của Mỹ, câu hỏi đồng đội )
Mệnh đề dưới đây có đúng không (0,33333…)(0,66666…) = (0,22222….)
Bài 5: (Thi trắc nghiệm học sinh giỏi toàn nước Mỹ ,1970)
Nếu F = 0,818181…. Là thập phân vô hạn tuần hoàn với các chữ số 8 và chữ số 1 lặp lại. Khi F được viết dưới dạng phân số tối giản thì mẩu số hơn tử số là bao nhiêu.
Bài 6: Đáp số nào dưới đây đúng :
A) 0,2222… B) 0,2020202… C)0,666…. D) 0,066666….
 
S

sky_net115

TÍNH DÃY SỐ
Thuật toán:

Cách 1: Hơi dở vì sử dụng nhiều biến, xử lý vấn đề chậm nhưng ngắn gọn về thuật toán:
Nhập thuật toán:
E=E+1:A=2B+C-D: D=C:C=B:B=A
CALC
E? ấn 3==
B? ấn 3=
C? ấn 2=
D? ấn 1=
= = = ...

Cách 2: Hay hơn cách 1 vì sử dụng ít biến, xử lý vấn đề nhanh nhưng thuật toán dài dòng:
Nhập thuật toán:
D=D+1:A=2B+C-3A: D=D+1:C=2A+B-3C: D=D+1:B=2C+A-3B
CALC
D? ấn 3==
B? ấn 3=
C? ấn 2=
A? ấn 1=

Cách 3 (Dùng cho 500MS)
1 |shift| |sto| |C|
2 |shift| |sto| |B|
3 |shift| |sto| |A|
2 |alpha| |A|+|alpha| |B|-|alpha| |C| |shift| |sto| |C| U4
2 |alpha| |C|+|alpha| |A|-|alpha| |B| |shift| |sto| |B| U5
2 |alpha| |B|+|alpha| |C|-|alpha| |A| |shift| |sto| |A| U6
replay(tam giác phía trên) hai lần |shift| |replay|= /= /...
thuật toán tuy dài nhưng số dấu bằng ít hơn
Nếu ngại phải đếm thì sau dòng thứ tư cho thêm |alpha| |D| |alpha| = (màu tím)|alpha| |D|+3 và thêm vào sau dòng thứ ba 4 |shift| |sto| |D|; thêm một lần ấn replay nữa (tui viết cho 500MS)

Theo mình thì trước tiên gán F cho -1. sau đó gán F +1 = F. ( Coi F là giá trị sau 1 lần lặp lại, số lần lặp lại 1 chu kì)
Rồi gán tiếp các ẩn trên lần lượt từng cái một :D VD như A+2=A , tiếp B+2=A , v... v....
Sau nó nhấn nút shift + copy là được 1 dãy truy hồi mà :D
nhấn sato chỉ gán giá trị thôi ^^!
Hồi trước thi máy tính bỏ túi hay làm cách trên :)) Nhanh hơn
 
Top Bottom