một số bài toán tương đối , mọi người xem và cùng trao đổi

T

tuyn

Bài 1: Áp dụng BĐT quen thuộc
[TEX]a,b \geq 0: \frac{a^n+b^n}{2} \geq ( \frac{a+b}{2})^n, \forall n \in N^*[/TEX]
Dấu "=" xảy ra khi a=b
Ta có:
[TEX] \frac{(sin^2x)^{1006}+(cos^2x)^{1006}}{2} \geq ( \frac{sin^2x+cos^2x}{2})^{1006}[/TEX]
[TEX]\Leftrightarrow sin^{2012}x+cos^{2012}x \geq \frac{1}{2^{1005}}[/TEX]
Suy ra: [TEX]PT \Leftrightarrow sin^2x=cos^2x \Leftrightarrow cos2x=0 \Leftrightarrow x= \frac{ \pi}{4}+ \frac{k \pi}{2}[/TEX]
 
D

duyphong1994

dành cho tuyn nũa này

giải hệ sau:
a,1. 2y^3 + 2x.căn2 của(1-x) = căn3 của(1-x) - y
2. 2x^2 + 2x.căn2 của(1+x) -1).y -1 = 0
b,1. trị tuyệt đối x +y = 4+ căn2của(y^2 + 2)
2. 0,5.lg(x^2) - 2.lg(2) = lg(1 + 0,5.y)
:)>-;):-SS@-):p@};-
dành cho tuyn đó:D;)
 
Last edited by a moderator:
Top Bottom