S
su10112000a


câu 1:
a/ Cho abc=135.
Tính $K=\frac{5a}{ab+5a+15}+\frac{9b}{bc+9b+45}+\frac{3c}{ac+3c+27}$
b/ Cho xyz=560.
Tính $L=\frac{56}{xy+8x+56}+\frac{80}{yz+10y+80}+\frac{70}{zx+7z+70}$
c/ Cho xyzt=16.
Tính $N=\frac{4x}{xyz+2xy+4x+8}+\frac{4y}{yzt+2yz+4y+8}+\frac{4z}{ztx+2zt+4z+8}+\frac{4t}{txy+2tx+4t+8}$
câu 2: tính
a/ $A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{n.(n+1).(n+2).(n+3)}$
b/ $B=\frac{4}{2.3.2^2}+\frac{5}{3.4.2^3}+\frac{6}{4.5.2^4}+...+\frac{n+3}{(n+1).(n+2).2^{n+1}}$
câu 3:
cho hai số a, b thỏa: a+b=1 và a.b=-1. Đặt
S2=$a^2$+$b^2$+$a^4$+$b^4$
S3=$a^3$+$b^3$+$a^5$+$b^5$
S4=$a^4$+$b^4$+$a^6$+$b^6$
..........................................
S(n-1)=$a^{n-1}$+$b^{n-1}$+$a^{n+1}$+$b^{n+1}$
Sn=$a^{n}$+$b^{n}$+$a^{n+2}$+$b^{n+2}$
S(n+1)=$a^{n+1}$+$b^{n+1}$+$a^{n+3}$+$b^{n+3}$
tính:
a/ S4=S3+S2 ; b/ S5=S4+S3 ; c/ S6=S5+S4 ; d/ S(n+1)=S(n-1)+Sn
a/ Cho abc=135.
Tính $K=\frac{5a}{ab+5a+15}+\frac{9b}{bc+9b+45}+\frac{3c}{ac+3c+27}$
b/ Cho xyz=560.
Tính $L=\frac{56}{xy+8x+56}+\frac{80}{yz+10y+80}+\frac{70}{zx+7z+70}$
c/ Cho xyzt=16.
Tính $N=\frac{4x}{xyz+2xy+4x+8}+\frac{4y}{yzt+2yz+4y+8}+\frac{4z}{ztx+2zt+4z+8}+\frac{4t}{txy+2tx+4t+8}$
câu 2: tính
a/ $A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{n.(n+1).(n+2).(n+3)}$
b/ $B=\frac{4}{2.3.2^2}+\frac{5}{3.4.2^3}+\frac{6}{4.5.2^4}+...+\frac{n+3}{(n+1).(n+2).2^{n+1}}$
câu 3:
cho hai số a, b thỏa: a+b=1 và a.b=-1. Đặt
S2=$a^2$+$b^2$+$a^4$+$b^4$
S3=$a^3$+$b^3$+$a^5$+$b^5$
S4=$a^4$+$b^4$+$a^6$+$b^6$
..........................................
S(n-1)=$a^{n-1}$+$b^{n-1}$+$a^{n+1}$+$b^{n+1}$
Sn=$a^{n}$+$b^{n}$+$a^{n+2}$+$b^{n+2}$
S(n+1)=$a^{n+1}$+$b^{n+1}$+$a^{n+3}$+$b^{n+3}$
tính:
a/ S4=S3+S2 ; b/ S5=S4+S3 ; c/ S6=S5+S4 ; d/ S(n+1)=S(n-1)+Sn
Last edited by a moderator: