Một bài giới hạn khó

M

mu_di_ghe

Tìm giới hạn
[tex]A= \lim (\tan a.\tan ^2\frac {a}{2} + 2\tan \frac {a}{2}.\tan ^2\frac {a}{2^2} + ... + 2^{n-1}\tan \frac {a}{2^{n-1}}.\tan^2 \frac {a}{2^n})[/tex]

Tổng quát :

[TEX]\lim \ 2^{n-1} \ tan {\frac{a}{2^{n-1}}}tan^2{\frac{a}{2^n}}[/TEX]

[TEX]=\lim{ \frac{tan{\frac{a}{2^{n-1}}}}{\frac{a}{2^n-1}} \ \frac{tan^2{\frac{a}{2^n}}}{(\frac{a}{2^n})^2} \ \frac{a^3}{4^n}=\lim\frac{a^3}{4^n}[/TEX]

Vậy ta có [TEX]A=lim( \frac{a^3}{4}+\frac{a^3}{4^2}+...+\frac{a^3}{4^n})[/TEX]

[TEX]=a^3.\lim \ [\frac{1}{4}+(\frac{1}{4})^2+...+(\frac{1}{4})^n]=a^3.\frac{1}{4} \ \frac{1}{1-\frac{1}{4}}=\frac{a^3}{3}[/TEX]
 
Top Bottom