mọi người làm giúp mình bài này với

H

hoanghondo94

giải giúp mình với:
[tex]\int\limits_{0}^{1}\frac{1}{x^4+1}dx[/tex]


[TEX]{\color{Blue} I=\int \frac{dx}{x^4+1}=\frac{1}{2}\int \frac{(x^2+1)-(x^2-1)}{x^4+1}dx=\frac{1}{2}\left ( \int \frac{x^2+1}{x^4+1}dx-\frac{x^2-1}{x^4+1}dx \right ) \\\\ =\frac{1}{2}\left ( \int \frac{1+\frac{1}{x^2}}{x^2+\frac{1}{x^2}}dx- \int \frac{1+\frac{1}{x^2}}{x^2-\frac{1}{x^2}}dx\right )=\frac{1}{2}\left ( \int \frac{d(x-\frac{1}{x})}{(x-\frac{1}{x})^2+(\sqrt{2})^2} -\int \frac{d(x+\frac{1}{x})}{(x+\frac{1}{x})^2-(\sqrt{2})^2}\right ) \\\\ =\frac{1}{2}\left ( \frac{1}{\sqrt{2}}arctan\frac{x^2-1}{x\sqrt{2}}-\frac{1}{2\sqrt{2}}ln\left | \frac{x^2-x\sqrt{2}+1}{x^2+x\sqrt{2}+1} \right | \right )+C[/TEX]:D:D:D
 
P

pe_kho_12412

tớ chỉ có ý kiến này: nếu bạn đưa bài lên học ban cơ bản sẽ ko dùng arc đâu Hoanghondo à :D:D
 
Top Bottom