Dạo này bị lão hoá rồi nên tạm thời chưa nghĩ ra cách nào ngắn hơn /
[TEX]I=\int \frac{dx}{\sqrt{1+e^x+e^{2x}}}=\int \frac{e^x dx}{e^x .\sqrt{1+e^x+e^{2x}}} =\int \frac{d e^x}{e^x .\sqrt{1+e^x+e^{2x}}}[/TEX]
Đặt [TEX]e^x =t [/TEX]
[TEX]I=\int \frac{dt}{t\sqrt{t^2+t+1}}=\int \frac{dt}{t\sqrt{(t+\frac{1}{2})^2+\frac{3}{4}}}[/TEX]
Đặt [TEX]t+\frac{1}{2}=\frac{\sqrt 3}{2} \tan u; u\in (\frac{-\pi}{2}, \frac{\pi}{2})[/TEX]
[TEX]\Rightarrow t =\frac{\sqrt 3}{2} \tan u - \frac{1}{2}; dt =\frac{\sqrt 3}{2}\frac{du}{\cos^2 u}[/TEX]
[TEX]I=\int\frac{\frac{\sqrt 3}{2} du}{(\frac{\sqrt 3}{2} \tan u -\frac{1}{2})\sqrt{\frac{3}{4}(\tan^2 u +1)} \cos^2 u} = \int\frac{\frac{\sqrt 3}{2} du}{(\frac{\sqrt 3}{2} \sin u -\frac{1}{2} \cos u)\sqrt{\frac{3}{4}\frac{1}{\cos^2 u}} \cos u}[/TEX]
[TEX]= \int\frac{\frac{\sqrt 3}{2} du}{(\sin \frac{\pi}{3} \sin u -\cos \frac{\pi}{3} \cos u) \frac{\sqrt 3}{2} \frac{1}{\cos u} \cos u}[/TEX] (vì [TEX]u\in (\frac{-\pi}{2}, \frac{\pi}{2})[/TEX] nên [TEX]\cos u > 0[/TEX])
[TEX]I = \int \frac{du}{\cos(u+\frac{\pi}{3})}=\int \frac{\cos (u+\frac{\pi}{3}) d(u+\frac{\pi}{3})}{\cos^2(u+\frac{\pi}{3})} =\int \frac{d \sin (x+\frac{\pi}{3})}{1-\sin^2 (u+\frac{\pi}{3})}[/TEX]
Nếu thấy rối mắt có thể đặt [TEX]\sin (u+\frac{\pi}{3}) =v[/TEX]
[TEX]I=\int \frac{dv}{(1-v^2)}=\frac{1}{2}\int\frac{(1+v)+(1-v)}{(1-v)(1+v)}dv =\frac{1}{2}(\int \frac{dv}{1-v}+\int\frac{dv}{1+v}) =\frac{1}{2}(\ln |1+v| -\ln |1-v|) =\frac{1}{2}\ln|\frac{1+v}{1-v}|[/TEX]
Có dài quá ko nhỉ /