Giải hệ phương trình:
2x căn(y)+ y căn(x)= 3 căn(4y-3)
2y căn(x)+ x căn(y)= 3 căn(4x-3)
\[\begin{array}{l}
\left\{ \begin{array}{l}
2x\sqrt y + y\sqrt x = 3\sqrt {4y - 3} (1)\\
2y\sqrt x + x\sqrt y = 3\sqrt {4x - 3} (2)
\end{array} \right.\\
dk...\\
(1) - (2) \to x\sqrt y - y\sqrt x = 3\left( {\sqrt {4y - 3} - \sqrt {4x - 3} } \right)\\
\leftrightarrow \left( {\sqrt {4y - 3} + \sqrt {4x - 3} } \right)\left( {x\sqrt y - y\sqrt x } \right) = 3\left( {4y - 3 - 4x + 3} \right)\\
\leftrightarrow \sqrt {xy} \left( {\sqrt {4y - 3} + \sqrt {4x - 3} } \right)\left( {\sqrt x - \sqrt y } \right) + 12\left( {\sqrt x - \sqrt y } \right)\left( {\sqrt x + \sqrt y } \right) = 0\\
\leftrightarrow \left( {\sqrt x - \sqrt y } \right)\left( {\sqrt {xy} \left( {\sqrt {4y - 3} + \sqrt {4x + 3} } \right) + 12\left( {\sqrt x + \sqrt y } \right)} \right) = 0\\
\leftrightarrow \sqrt x - \sqrt y = 0\\
\leftrightarrow x = y\\
\leftrightarrow ...
\end{array}\]