![](https://blog.hocmai.vn/wp-content/uploads/2017/07/hot.gif)
![](https://blog.hocmai.vn/wp-content/uploads/2017/07/hot.gif)
Bài 1: Cho tam giác ABC cân tại A, đường trung tuyến BM. Gọi O là giao điểm các đường trung trực của tam giác ABC, E là trọng tâm của tam giác ABM. CMR EO vuông góc với BM.
Bài 2: Tam giác ABC. Trung tuyến AM, tia phân giác AMB và AMC cắt AB, AC tại D và E.
a) CMR: DE//BC
b) BC=a; AM=m. Tính DE
c) I là giao điểm của AM và DE. I chuyển động trên đường nào nếu tam giác ABC có BC cố định và trung tuyến AM=m không đổi.
d) Tam giác ABC cần điều kiện gì để DE là đường trung bình tam giác.
Bài 3: Cho tam giác ABC vuông cân tại A. Các điểm D, E, F theo thứ tự chia trong các cạnh AB, BC, CA theo cùng một tỉ số. Chứng minh rằng: AE = DF, AE vuông góc với DF.
Bài 2: Tam giác ABC. Trung tuyến AM, tia phân giác AMB và AMC cắt AB, AC tại D và E.
a) CMR: DE//BC
b) BC=a; AM=m. Tính DE
c) I là giao điểm của AM và DE. I chuyển động trên đường nào nếu tam giác ABC có BC cố định và trung tuyến AM=m không đổi.
d) Tam giác ABC cần điều kiện gì để DE là đường trung bình tam giác.
Bài 3: Cho tam giác ABC vuông cân tại A. Các điểm D, E, F theo thứ tự chia trong các cạnh AB, BC, CA theo cùng một tỉ số. Chứng minh rằng: AE = DF, AE vuông góc với DF.