10.
$$\eqalign{
& (m + 1)x + {m^2} - 1 = 0 \cr
& \Leftrightarrow (m + 1)(x - m + 1) = 0 \cr
& m + 1 \ne 0 \Leftrightarrow m \ne - 1 \cr
& pt \Leftrightarrow x = m - 1 \cr} $$
$$\eqalign{
& {m^2}x + m - mx = 1 \cr
& \Leftrightarrow ({m^2} - m)x + m - 1 = 0 \cr
& \Leftrightarrow (m - 1)(mx + 1) = 0 \cr
& {m^2} - m \ne 0 \Leftrightarrow m \ne 0,m \ne 1 \cr
& pt \Leftrightarrow x = - {1 \over m} \cr} $$