Ta thấy: [tex]a+b+c \geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{a^2}{ab}+\frac{b^2}{bc}+\frac{c^2}{ca} \geq \frac{(a+b+c)^2}{ab+bc+ca} \Rightarrow ab+bc+ca \geq a+b+c[/tex]
[tex]3(a+b+c)=(\frac{a}{b}+\frac{a}{b}+\frac{b}{c})+(\frac{b}{c}+\frac{b}{c}+\frac{c}{a})+(\frac{c}{a}+\frac{c}{a}+\frac{a}{b}) \geq 3\sqrt[3]{\frac{a^2}{bc}}+3\sqrt[3]{\frac{b^2}{ca}}+3\sqrt[3]{\frac{c^2}{ab}}=\frac{3(a+b+c)}{\sqrt[3]{abc}} \Rightarrow abc \geq 1[/tex]
Đặt [tex]p=a+b+c,q=ab+bc+ca,r=abc\Rightarrow p \leq q,r \geq 1[/tex]
Ta sẽ chứng minh [tex]\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1} \leq \frac{3}{2}\Leftrightarrow \frac{q+2p+3}{p+q+r+1} \leq \frac{3}{2}\Leftrightarrow q+3r \geq p+3[/tex](đúng)
Từ đó [tex]P=3-(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}) \geq \frac{3}{2}[/tex]
P/s: Ở đây [TEX](a,b,c)=(x,y,z)[/TEX] nhé, anh gõ nhầm biến.