Toán 9 Min Max

Lê.T.Hà

Học sinh tiến bộ
Thành viên
25 Tháng một 2019
1,047
1,805
236
Bắc Giang
Đã thất học :<
[tex](x-y)^2(x^2+xy+y^2)\geq 0\Leftrightarrow x^4+y^4\geq xy(x^2+y^2)[/tex]
[tex]\Rightarrow P= \sum \dfrac{1}{x^4+y^4+z}\leq \sum \dfrac{1}{xy(x^2+y^2)+z}=\sum\dfrac{z}{xyz(x^2+y^2)+z^2}=\dfrac{x+y+z}{x^2+y^2+z^2}[/tex]
[tex]P \leq \dfrac{3(x+y+z)}{(x+y+z)^2}=\dfrac{3}{x+y+z}\leq \dfrac{3}{3\sqrt[3]{xyz}}=1[/tex]
 

huyenhuyen5a12

Học sinh chăm học
Thành viên
20 Tháng bảy 2018
829
929
146
17
Thái Bình
THCS Lê Danh Phương
[tex](x-y)^2(x^2+xy+y^2)\geq 0\Leftrightarrow x^4+y^4\geq xy(x^2+y^2)[/tex]
[tex]\Rightarrow P= \sum \dfrac{1}{x^4+y^4+z}\leq \sum \dfrac{1}{xy(x^2+y^2)+z}=\sum\dfrac{z}{xyz(x^2+y^2)+z^2}=\dfrac{x+y+z}{x^2+y^2+z^2}[/tex]
[tex]P \leq \dfrac{3(x+y+z)}{(x+y+z)^2}=\dfrac{3}{x+y+z}\leq \dfrac{3}{3\sqrt[3]{xyz}}=1[/tex]
Cho e tại sao lại ra được cái chỗ [tex]P\leq \frac{3(x+y+z)}{(x+y+z)^2}[/tex] vậy ạ??
 
Top Bottom