Ta có:
$P=\sum \dfrac{x^2}{y^2+z^2+yz} \ge \sum \dfrac{x^2}{y^2+z^2+\dfrac{y^2+z^2}{2}}=\sum \dfrac{x^2}{\dfrac{3}{2}(y^2+z^2)}=\dfrac{2}{3} \sum \dfrac{x^2}{y^2+z^2}$
Đến đây ta có BĐT: $\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b} \ge \dfrac{3}{2}$ (BĐT Nesbit)
$\iff (a+b+c)(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}) \ge 4,5$
$\iff (a+b+b+c+c+a)(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}) \ge 9$ (đúng với BĐT Bunhiacopxki)
Dấu '=' xảy ra khi: $a=b=c$
Khi đó: $P \ge \dfrac{2}{3} \sum \dfrac{x^2}{y^2+z^2} \ge \dfrac{2}{3}.\dfrac{3}{2} =1$
Dấu '=' xảy ra khi: $x=y=z$