Toán Lượng giác

Blue Plus

Cựu TMod Toán|Quán quân WC18
Thành viên
TV ấn tượng nhất 2017
7 Tháng tám 2017
4,506
10,437
1,114
Khánh Hòa
$\color{Blue}{\text{Bỏ học}}$
Chứng minh:
[tex]\frac{tan^{2}x-sin^{2}x}{cot^{2}x-cos^{2}x}= tan^{6}x[/tex]
Camon nhìu ạ
$ \dfrac{\tan^2x - \sin^2x}{\cot^2x - \cos^2x} \\ = \dfrac{\dfrac{\sin^2x}{\cos^2x} - \sin^2x}{\dfrac{\cos^2x}{\sin^2x} - \cos^2x} \\ = \dfrac{\sin^2x\left ( \dfrac{1}{\cos^2x} - 1 \right )}{\cos^2x\left ( \dfrac{1}{\sin^2x} - 1 \right )} \\ = \dfrac{\sin^2x}{\cos^2x} . \dfrac{1 + \tan^2x - 1}{1 + \cot^2x - 1} \\ = \tan^2x . \dfrac{\tan^2x}{\dfrac{1}{\tan^2x}} \\ = \tan^2x . \tan^4x \\ = \tan^6x $
 
Top Bottom