Lượng giác

H

huong_ngoc_98@yahoo.com.vn

Last edited by a moderator:
T

trantien.hocmai

$\text{câu 1} \\
PT \leftrightarrow 4(1-\cos ^22x)+3(1-\cos 2x)-9-3\cos 2x=0 \\
\leftrightarrow 2\cos ^22x+3\cos 2x+1=0$
 
T

trantien.hocmai

$\text{câu 2} \\
PT \leftrightarrow \cos x-\sin 2x=\sqrt{3}(\cos 2x+\sin x) \\
\leftrightarrow \cos x-\sqrt{3}\sin x=\sqrt{3}\cos 2x+\sin 2x$
 
X

xuanquynh97

$\frac{(1-2sinx)cosx}{(1+2sinx)(1-sinx)}= \sqrt3
4$
PT \Leftrightarrow $\dfrac{cosx - sin2x}{cos2x + sinx}=\dfrac{sin\dfrac{\pi}{3}}{cos\dfrac{\pi}{3}}$

$<=> cosx.cos(\dfrac{\pi}{3}) - cos(\dfrac{\pi}{3}).sin2x= sin(\dfrac{\pi}{3}).cos 2x+ sinxsin(\dfrac{\pi}{3})$

$<=> cosxcos(\dfrac{\pi}{3}) - sinxsin(\dfrac{\pi}{3})= sin(\dfrac{\pi}{3})cos 2x+ cos(\dfrac{\pi}{3})sin 2x$

$<=> cos(x+\dfrac{\pi}{3}) = sin(\dfrac{\pi}{3}+2x)$
 
T

trantien.hocmai

$\text{câu 5} \\
PT \leftrightarrow (2\sin x+1)(3\cos 4x+2\sin x-4)=(2\sin x+1)(2\sin x-1)$
 
X

xuanquynh97

$sinx−2sin^3x+cosx.sin2x+\sqrt{3}cos3x=2cos4x$

PT \Leftrightarrow$(1-2sin^2x)sinx+cosxsin2x+\sqrt{3}cos3x=2cos4x$

\Leftrightarrow $sinxcos2x+cosxsin2x+\sqrt{3}cos3x=2cos4x$

\Leftrightarrow $sin3x+\sqrt{3}cos3x=2cos4x$

\Leftrightarrow $cos(3x-\dfrac{\pi}{6})=cos4x$
 
T

trantien.hocmai

$\text{câu 4} \\
PT \leftrightarrow \frac{2\cos 2x}{\sin 2x}+4\sin 2x-\frac{2}{\sin 2x}=0 \\
\leftrightarrow 2\cos 2x+4\sin ^22x-2=0 \\
\leftrightarrow 4(1-\cos ^22x)+2\cos 2x-2=0$
 
Top Bottom