sin(x) - 2sin(2x) - sin(3x) = 2can2
<--->sin(x) - 4sin(x)*cos(x) - 3sin(x) + 4sin(x)^3=2can2
<--->sin(x)*[-4cos(x)- 2 + 4sin(x)^2 ] = 2can2
<--->sin(x)*[ 2sin(x)^2- 2cos(x)^2 - 4cos(x)] = 2can2
<--->sin(x)*[cos(2x) +2cos(x) ] = -can2
<--->sin(x)*cos(2x) + sin(2x) = -can2 (1)
ap dung Bunhiacopxki, ta co:
[sin(x)*cos(2x) +sin(2x)]^2 \leq [cos(2x)^2 +sin(2x)^2]*[sin(x)^2 +1] \leq2
===>-can2 \leq[sin(x)*cos(2x) +sin(2x)]\leqcan2
vay (1)<===>[cos(2x)/sin(2x)] = sin(x) va [sin(x)=1 hoac sin(x)=-1].
cac ban giai he tren de suy ra nghiem.
Cach giai nay co van de gi ko .cac ban cho y kien nhe.