Bài 2: Hình như đề thế này phải không bạn.
$$I=\int_0^ {\frac{\pi}{4}} \dfrac{2x+\cos^2x}{1+\sin 2x} \mathrm{d} x.$$
Ta có:
$$I=\int_0^ {\frac{\pi}{4}} \dfrac{2x+\cos^2x}{1+\sin 2x} \mathrm{d} x.$$$$=\int_0^ {\frac{\pi}{4}} \dfrac{4x+1+\cos2x}{2(1+\sin 2x)} \mathrm{d} x.$$$$=\int_0^ {\frac{\pi}{4}} \dfrac{\cos2x}{2(1+\sin 2x)} \mathrm{d} x+\int_0^ {\frac{\pi}{4}} \dfrac{4x+1}{2(1+\sin 2x)} \mathrm{d} x.$$$$=\int_0^ {\frac{\pi}{4}} \dfrac{1}{4(1+\sin 2x)} d\sin2x+\int_0^ {\frac{\pi}{4}} \dfrac{4x+1}{4\cos^2\left(x-\dfrac{\pi}{4}\right)} \mathrm{d} x.$$$$=\dfrac{\ln|\sin2x+1|}{4}+\dfrac{4x+1}{4}.tan\left(x-\dfrac{\pi}{4}\right)\bigg|_0^ {\frac{\pi}{4}} -\int_0^ {\frac{\pi}{4}} \tan\left(x-\dfrac{\pi}{4}\right)dx.$$$$=\dfrac{\ln|\sin2x+1|}{4}+\dfrac{4x+1}{4}.\tan\left(x-\dfrac{\pi}{4}\right) +\ln|\cos\left(x-\dfrac{\pi}{4}\right)|\bigg|_0^ {\frac{\pi}{4}}$$