Sửa lại đề nhé.Sai đâu bảo mình ha
1,CMR :
[TEX]Sin{\frac{A}{2}}+Sin{\frac{B}{2}}+Sin{\frac{C}{2}}<Cos{\frac{A}{2}}+Cos{\frac{B}{2}}+Cos{\frac{C}{2}}[/TEX]
[TEX](sin \frac{A}{2} + sin \frac{B}{2} + sin \frac{C}{2})^2 \leq 3(sin^2 \frac{A}{2} + sin^2 \frac{B}{2} + sin^2 \frac{C}{2}) = 9 - 3(cos^2{\frac{A}{2}} +Cos^2{\frac{B}{2}}+ Cos^2{\frac{C}{2}})[/TEX]
Cần chứng minh :
[TEX](cos{\frac{A}{2}} +Cos{\frac{B}{2}}+ Cos{\frac{C}{2}})^2 + 3(cos^2{\frac{A}{2}} +Cos^2{\frac{B}{2}}+ Cos^2{\frac{C}{2}})> {9}[/TEX]
Lại có:
[TEX]3(cos^2{\frac{A}{2}} +Cos^2{\frac{B}{2}}+ Cos^2{\frac{C}{2}}) \geq (cos{\frac{A}{2}} +Cos{\frac{B}{2}}+ Cos{\frac{C}{2}})^2 [/TEX]
SUy ra cần chứng minh :
[TEX] 2(cos{\frac{A}{2}} +Cos{\frac{B}{2}}+ Cos{\frac{C}{2}})^2 >9[/TEX]