$(a+2b)(a+2c)=a^{2}+2a(b+c)+4bc\geq a^{2}+4a\sqrt{bc}+4bc=(a+2\sqrt{bc})^{2}$
$\Rightarrow \sqrt{(a+2b)(a+2c)}\geq a+2\sqrt{bc}$ (BĐT Cauchy)
Chứng minh tương tự:....
$\Rightarrow \sqrt{(a+2b)(a+2c)}+\sqrt{(b+2a)(b+2c)}+\sqrt{(c+2a)(c+2b)}$
$\geq a+2\sqrt{bc}+b+2\sqrt{ca}+c+2\sqrt{ab}$
$=(\sqrt{a}+\sqrt{b}+\sqrt{c})^{2}=(\sqrt{3})^{2}=3$
Đẳng thức xảy ra [tex]\Leftrightarrow a=b=c[/tex]
Mà [tex]\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{3}\Rightarrow \sqrt{a}=\frac{\sqrt{3}}{3}[/tex]
Thay a=b=c vào M ta được: [tex]M=(2\sqrt{a}+3\sqrt{a}-4\sqrt{a})^{2}=(\sqrt{a})^{2}=(\frac{\sqrt{3}}{3})^{2}=\frac{1}{3}[/tex]
Vậy...