1/giải phương trình:
[tex](\sqrt{x+5}-\sqrt{x+2})(1+\sqrt{x^2+7x+10})=3[/tex]
2/ biết x+y+z không lớn hơn 3
tìm max
A=[tex]\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}+2(\sqrt{x}+\sqrt{y}+\sqrt{z})[/tex]
Bài 2:
Áp dụng BĐT Bunyakovsky ta có:
[tex](\sqrt{x^{2}+1}+\sqrt{2x})^{2}\leq 2(x^{2}+1+2x)=2(x+1)^{2}\Rightarrow \sqrt{x^{2}+1}+\sqrt{2x}\leq \sqrt{2}(x+1)[/tex]
Tương tự:....
Có: $A=\sqrt{x^{2}+1}+\sqrt{y^{2}+1}+\sqrt{z^{2}+1}+2(\sqrt{x}+\sqrt{y}+\sqrt{z})$
$=(\sqrt{x^{2}+1}+\sqrt{2x})+(\sqrt{y^{2}+1}+\sqrt{2y})+(\sqrt{z^{2}+1}+\sqrt{2z})+(2-\sqrt{2})(\sqrt{x}+\sqrt{y}+\sqrt{z})$
$\leq \sqrt{2}(x+1)+\sqrt{2}(y+1)+\sqrt{2}(z+1)+(2-\sqrt{2})(\frac{x+1}{2}+\frac{y+1}{2}+\frac{z+1}{2})$
$=\sqrt{2}(x+y+z+3)+(2-\sqrt{2})(\frac{x+y+z+3}{2})$
$\leq \sqrt{2}.6+(2-\sqrt{2}).3=6+3\sqrt{2}$
Dấu "=" xảy ra [tex]\Leftrightarrow x=y=z=1[/tex]