Ta có: $\sqrt{x-4}\geq 0\Leftrightarrow \sqrt{x-4}-2\geq -2$ hay $A\geq -2$
Dấu '=' xảy ra khi $x=4$
Vậy $A_{min}=-2\Leftrightarrow x=4$
Ta có: $B=x-\sqrt{x}=(x-\sqrt{x}+\dfrac{1}{4})-\dfrac{1}{4}=(\sqrt{x}-\dfrac{1}{2})^2-\dfrac{1}{4}\geq \dfrac{-1}{4}$
Dấu '=' xảy ra khi $x=\dfrac14$
Vậy $B_{min}=\dfrac{-1}4\Leftrightarrow x=\dfrac14$