caanf gấp ạ, mn giúp e với
Cần CM các BĐT
$a^3+b^3\geq ab(a+b)$
$ab\leq \frac{(a+b)^2}{4}$
_______
Có:
$6=2(\frac{a}{b}+\frac{b}{a})+c\left ( \frac{a}{b^2}+\frac{b}{a^2} \right )\geq 2.2+c\left ( \frac{a^3+b^3}{a^2b^2} \right )\Leftrightarrow 2\geq c\left ( \frac{ab(a+b)}{a^2b^2} \right )=c\left ( \frac{a+b}{ab} \right )$
Lại có $ab\leq \frac{(a+b)^2}{4}\Leftrightarrow \frac{a+b}{ab}\geq \frac{4}{a+b}\Leftrightarrow \frac{c(a+b)}{ab}\geq \frac{4c}{a+b}\Leftrightarrow 2\geq \frac{4c}{a+b}\Leftrightarrow a+b\geq 2c$
$\frac{bc}{a(2b+c)}+\frac{ac}{b(2a+c)}=c\left ( \frac{b^2}{ab(2b+c)}+\frac{a^2}{ab(2a+c)} \right )\geq c.\frac{(a+b)^2}{ab(2a+2b+2c)}\geq \frac{c(a+b)^2}{3ab(a+b)}=\frac{c(a+b)}{3ab}$
Mà $2\geq c\left ( \frac{a+b}{ab} \right )\Leftrightarrow \frac{ab}{c(a+b)}\geq 2\Leftrightarrow \frac{8ab}{3c(a+b)}\geq \frac{4}{3}$
$\Rightarrow P\geq \frac{c(a+b)}{3ab}+\frac{4ab}{c(a+b)}=\frac{c(a+b)}{3ab}+\frac{4ab}{3c(a+b)}+\frac{8ab}{3c(a+b)}\geq \frac{4}{3}+\frac{4}{3}=\frac{8}{3}$
Dấu = khi $a=b=c$
P.s: ^^ có tham khảo qua key từ trước . Đây là đề hsg tầm năm 2014-2015 j đấy ~
#123