- 9 Tháng mười 2017
- 1
- 0
- 1
- 21
- TP Hồ Chí Minh
- Trường THCS Nguyễn Hiền


Cho điểm A nằm ngoài đường tròng (O;R), vẽ hai tiếp tuyến AB, AC với đường tròn (O) (B,C là các tiếp điểm). Kẻ dây BD của đường tròn (O) và BD song song với OA.
a) Cm: A, B, O, C cùng thuộc một đường tròn.
b) Cm: [tex]OA\perp BC[/tex]
c0 Cm: C, O, D thẳng hàng.
d) Gọi E là gia điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh: [tex]\angle AHE[/tex] = [tex]\angle OED[/tex] rồi suy ra BC là đường phân giác góc DHE.
* Mình làm a); b) rồi nhé !!!
a) Cm: A, B, O, C cùng thuộc một đường tròn.
b) Cm: [tex]OA\perp BC[/tex]
c0 Cm: C, O, D thẳng hàng.
d) Gọi E là gia điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh: [tex]\angle AHE[/tex] = [tex]\angle OED[/tex] rồi suy ra BC là đường phân giác góc DHE.
* Mình làm a); b) rồi nhé !!!